Sign in

 

Faculty of Information and Communication Technology

Michał Przewoźniczek, DSc, PhD, Eng

E-mail: michal.przewozniczek@pwr.edu.pl

Unit: Faculty of Information and Communication Technology (N) » Department of Systems and Computer Networks

ul. I. Łukasiewicza 3/5, 50-371 Wrocław
building B-4, room 4.14
phone +48 71 320 3207


Selected publications
1
Article
2024
Michał Przewoźniczek, Bartosz Frej, Marcin M Komarnicki,
From direct to directional variable dependencies – non-symmetrical dependencies discovery in real-world and theoretical problems. IEEE Transactions on Evolutionary Computation. 2024, s. 1-15. ISSN: 1089-778X; 1941-0026
Resources:DOIURLImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
2
Article
2024
Renato Tinós, Michał Przewoźniczek, Darrell Whitley, Francisco Chicano,
Iterated local search with Linkage Learning. ACM Transactions on Evolutionary Learning and Optimization. 2024, vol. 4, nr 2, art. 7, s. 1-29. ISSN: 2688-3007
Resources:URLSFX
3
Proceeding paper
2024
Marcin M Komarnicki, Michał Przewoźniczek, Renato Tinós, Xiaodong Li,
Overlapping cooperative co-evolution for overlapping large-scale global optimization problems. W: GECCO '24: Proceedings of the Genetic and Evolutionary Computation Conference, July 14-18, 2024, Melbourne, Australia / ed. Julia Handl. New York, NY : ACM, cop. 2024. s. 665-673. ISBN: 979-8-4007-0494-9
Resources:DOIURLOpen Access
4
Proceeding paper
2024
Łukasz Tulczyjew, Michał Przewoźniczek, Renato Tinós, Agata M Wijata, Jakub Nalepa,
CANNIBAL unveils the hidden gems: hyperspectral band selection via clustering of weighted variable interaction graphs. W: GECCO '24: Proceedings of the Genetic and Evolutionary Computation Conference, July 14-18, 2024, Melbourne, Australia / ed. Julia Handl. New York, NY : ACM, cop. 2024. s. 412-421. ISBN: 979-8-4007-0494-9
Resources:DOIURLOpen Access
5
Proceeding paper
2023
Michał Przewoźniczek, Renato Tinós, Marcin M Komarnicki,
First improvement hill climber with linkage learning - on introducing dark Gray-box optimization into statistical linkage learning genetic algorithms. W: GECCO '23 : Proceedings of the 2023 Genetic and Evolutionary Computation Conference, July 15-19, 2023, Lisbon, Portugal / eds. Sara Silva, Luís Paquete. New York, NY : ACM, cop. 2023. s. 946-954. ISBN: 979-8-4007-0119-1
Resources:DOIOpen Access
6
Proceeding paper
2023
Michał Przewoźniczek, Marcin M Komarnicki,
To slide or not to slide? Moving along fitness levels and preserving the gene subsets diversity in modern evolutionary algorithms. W: GECCO '23 : Proceedings of the 2023 Genetic and Evolutionary Computation Conference, July 15-19, 2023, Lisbon, Portugal / eds. Sara Silva, Luís Paquete. New York, NY : ACM, cop. 2023. s. 955-962. ISBN: 979-8-4007-0119-1
Resources:DOIOpen Access
7
Proceeding paper
2023
Renato Tinós, Michał Przewoźniczek, Darrell Whitley, Francisco Chicano,
Genetic algorithm with linkage learning. W: GECCO '23 : Proceedings of the 2023 Genetic and Evolutionary Computation Conference, July 15-19, 2023, Lisbon, Portugal / eds. Sara Silva, Luís Paquete. New York, NY : ACM, cop. 2023. s. 981-989. ISBN: 979-8-4007-0119-1
Resources:DOIOpen Access
8
Proceeding paper
2023
Marcin M Komarnicki, Halina Kwaśnicka, Michał Przewoźniczek, Krzysztof Walkowiak,
Incremental recursive ranking grouping - a decomposition strategy for additively and nonadditively separable problems. W: GECCO’23 Companion : Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion, July 15-19, 2023, Lisbon, Portugal / ed. Luís Paquete. New York, NY : ACM, cop. 2023. s. 27-28. ISBN: 979-8-4007-0120-7
Resources:DOIOpen Access
9
Article
2023
Marcin M Komarnicki, Michał Przewoźniczek, Halina Kwaśnicka, Krzysztof Walkowiak,
Incremental recursive ranking grouping for large scale global optimization. IEEE Transactions on Evolutionary Computation. 2023, vol. 27, nr 5, s. 1498-1513. ISSN: 1089-778X; 1941-0026
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal List
10
Proceeding paper
2022
Michał Przewoźniczek, Marcin M Komarnicki,
Empirical linkage learning for non-binary discrete search spaces in the optimization of a large-scale real-world problem. W: GECCO '22 : Proceedings of the 2022 Genetic and Evolutionary Computation Conference, July 9-13, 2022, Boston, Massachusetts / ed. Jonathan E. Fieldsend. New York, NY : ACM, cop. 2022. s. 35-36. ISBN: 978-1-4503-9237-2
Resources:DOIURL

All publications

Politechnika Wrocławska © 2025