Sign in

 

Faculty of Information and Communication Technology

Prof. Michał Woźniak, DSc, PhD, Eng

E-mail: michal.wozniak@pwr.edu.pl

Unit: Faculty of Information and Communication Technology (N) » Department of Systems and Computer Networks

Michał Woźniakul. Z. Janiszewskiego 11/17, 50-372 Wrocław
building C-3, room 114
phone +48 71 320 3539

Office hours

  • Monday 11.00-13.00
  • Wednesday 11.00-13.00

Research fields

  • Machine learning; data stream mining; data stream classification, concept drift; ensemble learning, classifier ensemble; inductive learning, data and web mining; learning on distributed and streaming data; pattern classification; imabalance data classification; classification with recognition with context; telemedicine and medical decision support.

Recent papers

2017

  • Koziarski M., Woźniak M., CCR: A combined cleaning and resampling algorithm for imbalanced data classification, Int. J. Appl. Math. Comput. Sci., Vol. 27, No. 4, 727-736.
  • Krawczyk B., Minku L., Gama J., Stefanowski J., Woźniak M., Ensemble learning for data stream analysis: A survey, Information Fusion, Vol. 37, pp. 132-156.
  • Ksieniewicz P., Grana M., Woźniak M., Paired feature multilayer ensemble - concept and evaluation of a classifier, Journal of Inteligent and Fuzzy Systems, vol. 32, issue 2, pp. 1427-1436.
  • Ramirez-Gallego S., Krawczyk B., Garcia S., Benitez M.J., Wozniak M., Herrera F., Nearest Neighbor Classification for High-Speed Big Data Streams Using Spark, IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, vol. 46, issue 10, pp. 2727-2739.

2016

  • Saez J.A., Krawczyk B., Woźniak M., Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets, Pattern Recognition, vol. 57, pp. 164-178.

Papers in DONA database


Selected publications
1
Proceeding paper
2023
Marcin Jasiński, Michał Woźniak,
Employing convolutional neural networks for continual learning. W: Artificial Intelligence and Soft Computing : 21th International Conference, ICAISC 2022, Zakopane, June 19-23, 2022 : proceedings. Pt. 1 / eds. Leszek Rutkowski [i in.]. Cham : Springer, cop. 2023. s. 288-297. ISBN: 978-3-031-23491-0; 978-3-031-23492-7
Resources:DOIURLSFX
2
Article
2023
Paweł Ksieniewicz, Paweł Zyblewski, Weronika Borek-Marciniec, Rafał Kozik, Michał Choraś, Michał Woźniak,
Alphabet Flatting as a variant of n-gram feature extraction method in ensemble classification of fake news. Engineering Applications of Artificial Intelligence. 2023, vol. 120, art. 105882, s. 1-11. ISSN: 0952-1976; 1873-6769
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal List
3
Article
2023
Michał Panek, Adam Pomykała, Michał Woźniak,
5G/5G+ network management employing AI-based continuous deployment. Applied Soft Computing. 2023, vol. 134, art. 109984, s. 1-13. ISSN: 1568-4946; 1872-9681
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal List
4
Article
2023
Jędrzej Z Kozal, Michał Woźniak,
Increasing depth of neural networks for life-long learning. Information Fusion. 2023, vol. 98, art. 101829, s. 1-10. ISSN: 1566-2535; 1872-6305
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
5
Article
2023
Michał Woźniak, Paweł Zyblewski, Paweł Ksieniewicz,
Active weighted aging ensemble for drifted data stream classification. Information Sciences. 2023, vol. 630, s. 286-304. ISSN: 0020-0255; 1872-6291
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal List
6
Proceeding paper
2022
Jędrzej Z Kozal, Michał Leś, Paweł Zyblewski, Paweł Ksieniewicz, Michał Woźniak,
Feature integration strategies for multilingual fake news classification. W: 2022 IEEE International Conference on Big Data, Dec 17 - Dec 20, 2022, Osaka, Japan : proceedings / eds. Shusaku Tsumoto [i in.]. Danvers, MA : IEEE, cop. 2022. s. 5049-5058. ISBN: 978-1-6654-8046-8; 978-1-6654-8045-1
Resources:DOIURL
7
Proceeding paper
2022
Sebastián Basterrech, Michał Woźniak,
Tracking changes using Kullback-Leibler divergence for the continual learning. W: 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC) October 9-12, 2022, Prague, Czech Republic : proceedings. Danvers, MA : IEEE, cop. 2022. s. 3279-3285. ISBN: 978-1-6654-5259-5; 978-1-6654-5258-8
Resources:DOIURL
8
Proceedings papers editing
2022
Nuno Moniz, Paula Branco, Luís Torgo, Nathalie Japkowicz, Michał Woźniak, Shuo Wang,
Fourth International Workshop on Learning with Imbalanced Domains : Theory and Applications, 23 September 2022, ECML-PKDD, Grenoble, France. [Cambridge]: [JMLR], cop. 2022. 198 s.
(Proceedings of Machine Learning Research, ISSN 2640-3498; vol. 183)
Resources:URL
9
Proceeding paper
2022
Szymon Wojciechowski, Germán González-Almagro, Salvador García, Michał Woźniak,
Adapting k-means algorithm for pair-wise constrained clustering of imbalanced data streams. W: Hybrid Artificial Intelligent Systems : 17th International Conference, HAIS 2022 Salamanca, Spain, September 5–7, 2022 : proceedings / eds. Pablo García Bringas [i in.]. Cham : Springer, cop. 2022. s. 153-163. ISBN: 978-3-031-15470-6; 978-3-031-15471-3
Resources:DOIURLSFX
10
Article
2022
Joanna A Grzyb, Michał Woźniak,
SVM ensemble training for imbalanced data classification using multi-objective optimization techniques. Applied Intelligence. 2022, s. 1-18. ISSN: 0924-669X; 1573-7497
Resources:DOIURLImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access

All publications

Politechnika Wrocławska © 2024