Sign in

 

Faculty of Information and Communication Technology

Prof. Urszula Markowska-Kaczmar, DSc, PhD, Eng

E-mail: urszula.markowska-kaczmar@pwr.edu.pl

Unit: Faculty of Information and Communication Technology (N) » Departament of Artificial intelligence

Urszula Markowska-Kaczmarpl. Grunwaldzki 9, 50-377 Wrocław
building D-2, room 201/18
phone +48 71 320 2466

Office hours

  • Monday 6.30 – 7.30
  • Tuesday 15.00 - 17.00
  • Wednesday 11.15-12.15

Research fields

  • deep learning; machine learning; neural networks; various applications of intelligent methods.

Recent papers

2015

  • Markowska-Kaczmar U., Kołdowski M., Spiking neural network vs multilayer perceptron: who is the winner in the racing car computer game. Soft Computing. 2015, vol. 19, nr 12, pp. 3465-3478.

2014

  • Kamola G., Spytkowski M., Paradowski M.T., Markowska-Kaczmar U., Image-based logical document structure recognition. Pattern Analysis and Applications. 2014, vol. 17, nr 3, pp. 1-15.

2012

  • Sas J., Markowska-Kaczmar U., Similarity-based training set acquisition for continuous handwriting recognition. Information Sciences. 2012, vol. 191, pp. 226-244.

2011

  • Kwaśnicka H., Markowska-Kaczmar U., Mikosik M., Flocking behaviour in simple ecosystems as a result of artificial evolution. Applied Soft Computing. 2011, vol. 11, nr 1, pp. 982-990.

2005

  • Markowska-Kaczmar U., Trelak W., Fuzzy logic and evolutionary algorithm - two techniques in rule extraction from neural networks, Neurocomputing 2005 vol. 63 pp. 359-379

Papers in DONA database

Homepage


Selected publications
1
Article
2025
Michał Karolewski, Michał Wawrzyniak, Karol Szymończyk, Joanna I Szołomicka, Jakub Pyka, Karol Kulawiec, Aneta Demidaś,
Masticatory organ dysfunction recognition based on multimodal information. Engineering Applications of Artificial Intelligence. 2025, vol. 144, art. 109998, s. 1-20. ISSN: 0952-1976; 1873-6769
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
2
Proceeding paper
2024
Filip Strzałka,
Gradient Overdrive: aviding negative randomness effects in Stochastic Gradient Descent. W: Recent Challenges in Intelligent Information and Database Systems : 16th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2024, Ras Al Khaimah, UAE, April 15–18, 2024 : proceedings. Pt. 1 / eds. Ngoc Thanh Nguyen [i in.]. Singapore : Springer, cop. 2024. s. 175-186. ISBN: 978-981-97-5936-1; 978-981-97-5937-8
Resources:DOIURLSFX
3
Article
2024
Michał P Karol, Łukasz Fuławka,
Deep learning for cancer cell detection: do we need dedicated models?. Artificial Intelligence Review. 2024, vol. 57, art. 53, s. 1-36. ISSN: 0269-2821; 1573-7462
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
4
Monographs and other books editing
2023
Nikhil Jain, Chee Peng Lim, Lakhmi C Jain,
Advances in smart healthcare paradigms and applications : outstanding women in healthcare. Vol. 1. Cham: Springer, cop. 2023. XII, 255 s. ISBN: 978-3-031-37305-3; 978-3-031-37306-0
(Intelligent Systems Reference Library, ISSN 1868-4394; vol. 244)
Resources:DOI
5
Monograph chapter
2023
Joanna I Szołomicka,
An overview of few-shot learning methods in analysis of histopathological images. W: Advances in smart healthcare paradigms and applications : outstanding women in healthcare. Vol. 1 / eds. Halina Kwaśnicka [i in.]. Cham : Springer, cop. 2023. s. 87-113. ISBN: 978-3-031-37305-3; 978-3-031-37306-0
Resources:DOISFX
6
Article
2022
Sebastian Jamroziński,
Semi‑supervised classifier guided by discriminator. Scientific Reports. 2022, vol. 12, art. 14665, s. 1-17. ISSN: 2045-2322
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
7
Proceeding paper
2021
Daniel Popek,
Utterance style transfer using deep models. W: Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES 2021 / eds. Jaroslaw Watrobski [i in.]. Amsterdam : Elsevier, cop. 2021. s. 2132-2141.
Resources:DOISFXOpen Access
8
Proceeding paper
2021
Adrian Ślimak,
Creating herd behavior by virtual agents using neural networks. W: Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES 2021 / eds. Jaroslaw Watrobski [i in.]. Amsterdam : Elsevier, cop. 2021. s. 437-446.
Resources:DOISFXOpen Access
9
Article
2021
Michał Kosturek,
Extreme learning machine versus classical feedforward network. Comparison from the usability perspective. Neural Computing & Applications. 2021, vol. 33, s. 15121-15144. ISSN: 0941-0643; 1433-3058
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
10
Article
2021
Mateusz Zimoch,
Human flow recognition using deep learning and image processing methods. Engineering Applications of Artificial Intelligence. 2021, vol. 104, art. 104346, s. 1-11. ISSN: 0952-1976; 1873-6769
Resources:DOISFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal List

All publications

Politechnika Wrocławska © 2025