Sign in

 

Faculty of Information and Communication Technology

Prof. Urszula Markowska-Kaczmar, DSc, PhD, Eng

E-mail: urszula.markowska-kaczmar@pwr.edu.pl

Unit: Faculty of Information and Communication Technology (N) » Departament of Artificial intelligence

Urszula Markowska-Kaczmarpl. Grunwaldzki 9, 50-377 Wrocław
building D-2, room 201/18
phone +48 71 320 2466

Office hours

  • Monday 6.30 – 7.30
  • Tuesday 15.00 - 17.00
  • Wednesday 11.15-12.15

Research fields

  • deep learning; machine learning; neural networks; various applications of intelligent methods.

Recent papers

2015

  • Markowska-Kaczmar U., Kołdowski M., Spiking neural network vs multilayer perceptron: who is the winner in the racing car computer game. Soft Computing. 2015, vol. 19, nr 12, pp. 3465-3478.

2014

  • Kamola G., Spytkowski M., Paradowski M.T., Markowska-Kaczmar U., Image-based logical document structure recognition. Pattern Analysis and Applications. 2014, vol. 17, nr 3, pp. 1-15.

2012

  • Sas J., Markowska-Kaczmar U., Similarity-based training set acquisition for continuous handwriting recognition. Information Sciences. 2012, vol. 191, pp. 226-244.

2011

  • Kwaśnicka H., Markowska-Kaczmar U., Mikosik M., Flocking behaviour in simple ecosystems as a result of artificial evolution. Applied Soft Computing. 2011, vol. 11, nr 1, pp. 982-990.

2005

  • Markowska-Kaczmar U., Trelak W., Fuzzy logic and evolutionary algorithm - two techniques in rule extraction from neural networks, Neurocomputing 2005 vol. 63 pp. 359-379

Papers in DONA database

Homepage


Selected publications
1
Article
2022
Sebastian Jamroziński, Urszula Markowska-Kaczmar,
Semi‑supervised classifier guided by discriminator. Scientific Reports. 2022, vol. 12, art. 14665, s. 1-17. ISSN: 2045-2322
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
2
Proceeding paper
2021
Daniel Popek, Urszula Markowska-Kaczmar,
Utterance style transfer using deep models. W: Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES 2021 / eds. Jaroslaw Watrobski [i in.]. Amsterdam : Elsevier, cop. 2021. s. 2132-2141.
Resources:DOISFXOpen Access
3
Proceeding paper
2021
Urszula Markowska-Kaczmar, Adrian Ślimak,
Creating herd behavior by virtual agents using neural networks. W: Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES 2021 / eds. Jaroslaw Watrobski [i in.]. Amsterdam : Elsevier, cop. 2021. s. 437-446.
Resources:DOISFXOpen Access
4
Proceeding paper
2021
Ewa Juralewicz, Urszula Markowska-Kaczmar,
Capsule network versus convolutional neural network in image classification. W: Computational Science - ICCS 2021 : 21st International Conference Krakow, Poland, June 16-18, 2021 : proceedings. Pt. 5 / eds. Maciej Paszynski [i in.]. Cham : Springer, cop. 2021. s. 17-30. ISBN: 978-3-030-77976-4; 978-3-030-77977-1
Resources:DOISFX
5
Article
2021
Mateusz Zimoch, Urszula Markowska-Kaczmar,
Human flow recognition using deep learning and image processing methods. Engineering Applications of Artificial Intelligence. 2021, vol. 104, art. 104346, s. 1-11. ISSN: 0952-1976; 1873-6769
Resources:DOISFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal List
6
Article
2021
Piotr Zieliński, Urszula Markowska-Kaczmar,
3D robotic navigation using a vision-based deep reinforcement learning model. Applied Soft Computing. 2021, vol. 110, art. 107602, s. 1-17. ISSN: 1568-4946; 1872-9681
Resources:DOISFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal List
7
Proceeding paper
2021
Anna Palczewska, Urszula Markowska-Kaczmar,
Interpreting neural networks prediction for a single instance via random forest feature contributions. W: Computational Science - ICCS 2021 : 21st International Conference Krakow, Poland, June 16-18, 2021 : proceedings. Pt. 2 / eds. Maciej Paszynski [i in.]. Cham : Springer, cop. 2021. s. 140-153. ISBN: 978-3-030-77963-4; 978-3-030-77964-1
Resources:DOISFX
8
Article
2021
Urszula Markowska-Kaczmar, Michał Kosturek,
Extreme learning machine versus classical feedforward network. Comparison from the usability perspective. Neural Computing & Applications. 2021, vol. 33, s. 15121-15144. ISSN: 0941-0643; 1433-3058
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
9
Proceeding paper
2020
Urszula Markowska-Kaczmar, Grzegorz Kułakowski,
Inference ability assessment of modified Differential Neural Computer. W: Intelligent Information and Database Systems : 12th Asian Conference, ACIIDS 2020, Phuket, Thailand, March 23-26, 2020 : proceedings. Pt. 1 / eds. Ngoc Thanh Nguyen [i in.]. Cham : Springer, cop. 2020. s. 380-391. ISBN: 978-3-030-41963-9; 978-3-030-41964-6
Resources:DOIURLSFX
10
Article
2020
Urszula Markowska-Kaczmar, Tomasz Marcinkowski,
Markov network versus recurrent neural network in forming herd behavior based on sight and simple sound communication. Applied Soft Computing. 2020, vol. 90, art. 106177, s. 1-52. ISSN: 1568-4946; 1872-9681
Resources:DOISFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal List

All publications

Politechnika Wrocławska © 2024