Sign in

 

Faculty of Information and Communication Technology

Prof. Urszula Markowska-Kaczmar, DSc, PhD, Eng

E-mail: urszula.markowska-kaczmar@pwr.edu.pl

Unit: Faculty of Information and Communication Technology (N) » Departament of Artificial intelligence

Urszula Markowska-Kaczmarpl. Grunwaldzki 9, 50-377 Wrocław
building D-2, room 201/18
phone +48 71 320 2466

Office hours

  • Monday 6.30 – 7.30
  • Tuesday 15.00 - 17.00
  • Wednesday 11.15-12.15

Research fields

  • deep learning; machine learning; neural networks; various applications of intelligent methods.

Recent papers

2015

  • Markowska-Kaczmar U., Kołdowski M., Spiking neural network vs multilayer perceptron: who is the winner in the racing car computer game. Soft Computing. 2015, vol. 19, nr 12, pp. 3465-3478.

2014

  • Kamola G., Spytkowski M., Paradowski M.T., Markowska-Kaczmar U., Image-based logical document structure recognition. Pattern Analysis and Applications. 2014, vol. 17, nr 3, pp. 1-15.

2012

  • Sas J., Markowska-Kaczmar U., Similarity-based training set acquisition for continuous handwriting recognition. Information Sciences. 2012, vol. 191, pp. 226-244.

2011

  • Kwaśnicka H., Markowska-Kaczmar U., Mikosik M., Flocking behaviour in simple ecosystems as a result of artificial evolution. Applied Soft Computing. 2011, vol. 11, nr 1, pp. 982-990.

2005

  • Markowska-Kaczmar U., Trelak W., Fuzzy logic and evolutionary algorithm - two techniques in rule extraction from neural networks, Neurocomputing 2005 vol. 63 pp. 359-379

Papers in DONA database

Homepage


Selected publications
1
Article
2025
Urszula Markowska-Kaczmar, Michał Karolewski, Michał Wawrzyniak, Karol Szymończyk, Joanna I Szołomicka, Jakub Pyka, Karol Kulawiec, Aneta Demidaś,
Masticatory organ dysfunction recognition based on multimodal information. Engineering Applications of Artificial Intelligence. 2025, vol. 144, art. 109998, s. 1-20. ISSN: 0952-1976; 1873-6769
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
2
Proceeding paper
2024
Filip Strzałka, Urszula Markowska-Kaczmar,
Gradient Overdrive: aviding negative randomness effects in Stochastic Gradient Descent. W: Recent Challenges in Intelligent Information and Database Systems : 16th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2024, Ras Al Khaimah, UAE, April 15–18, 2024 : proceedings. Pt. 1 / eds. Ngoc Thanh Nguyen [i in.]. Singapore : Springer, cop. 2024. s. 175-186. ISBN: 978-981-97-5936-1; 978-981-97-5937-8
Resources:DOIURLSFX
3
Article
2024
Michał P Karol, Martin Tabakow, Urszula Markowska-Kaczmar, Łukasz Fuławka,
Deep learning for cancer cell detection: do we need dedicated models?. Artificial Intelligence Review. 2024, vol. 57, art. 53, s. 1-36. ISSN: 0269-2821; 1573-7462
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
4
Monographs and other books editing
2023
Halina Kwaśnicka, Nikhil Jain, Urszula Markowska-Kaczmar, Chee Peng Lim, Lakhmi C Jain,
Advances in smart healthcare paradigms and applications : outstanding women in healthcare. Vol. 1. Cham: Springer, cop. 2023. XII, 255 s. ISBN: 978-3-031-37305-3; 978-3-031-37306-0
(Intelligent Systems Reference Library, ISSN 1868-4394; vol. 244)
Resources:DOI
5
Monograph chapter
2023
Joanna I Szołomicka, Urszula Markowska-Kaczmar,
An overview of few-shot learning methods in analysis of histopathological images. W: Advances in smart healthcare paradigms and applications : outstanding women in healthcare. Vol. 1 / eds. Halina Kwaśnicka [i in.]. Cham : Springer, cop. 2023. s. 87-113. ISBN: 978-3-031-37305-3; 978-3-031-37306-0
Resources:DOISFX
6
Article
2022
Sebastian Jamroziński, Urszula Markowska-Kaczmar,
Semi‑supervised classifier guided by discriminator. Scientific Reports. 2022, vol. 12, art. 14665, s. 1-17. ISSN: 2045-2322
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
7
Proceeding paper
2021
Daniel Popek, Urszula Markowska-Kaczmar,
Utterance style transfer using deep models. W: Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES 2021 / eds. Jaroslaw Watrobski [i in.]. Amsterdam : Elsevier, cop. 2021. s. 2132-2141.
Resources:DOISFXOpen Access
8
Proceeding paper
2021
Urszula Markowska-Kaczmar, Adrian Ślimak,
Creating herd behavior by virtual agents using neural networks. W: Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES 2021 / eds. Jaroslaw Watrobski [i in.]. Amsterdam : Elsevier, cop. 2021. s. 437-446.
Resources:DOISFXOpen Access
9
Article
2021
Urszula Markowska-Kaczmar, Michał Kosturek,
Extreme learning machine versus classical feedforward network. Comparison from the usability perspective. Neural Computing & Applications. 2021, vol. 33, s. 15121-15144. ISSN: 0941-0643; 1433-3058
Resources:DOIURLSFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal ListOpen Access
10
Article
2021
Mateusz Zimoch, Urszula Markowska-Kaczmar,
Human flow recognition using deep learning and image processing methods. Engineering Applications of Artificial Intelligence. 2021, vol. 104, art. 104346, s. 1-11. ISSN: 0952-1976; 1873-6769
Resources:DOISFXImpact FactorMaster Journal ListMinistry of Science and Higher Education Journal List

All publications

Politechnika Wrocławska © 2025