Prof. Urszula Markowska-Kaczmar, DSc, PhD, Eng
E-mail: urszula.markowska-kaczmar@pwr.edu.pl
Unit: Faculty of Information and Communication Technology (N) » Departament of Artificial intelligence
pl. Grunwaldzki 9, 50-377 Wrocław
building D-2, room 201/18
phone +48 71 320 2466
Office hours
- Monday 6.30 – 7.30
- Tuesday 15.00 - 17.00
- Wednesday 11.15-12.15
Research fields
- deep learning; machine learning; neural networks; various applications of intelligent methods.
Recent papers
2015
- Markowska-Kaczmar U., Kołdowski M., Spiking neural network vs multilayer perceptron: who is the winner in the racing car computer game. Soft Computing. 2015, vol. 19, nr 12, pp. 3465-3478.
2014
- Kamola G., Spytkowski M., Paradowski M.T., Markowska-Kaczmar U., Image-based logical document structure recognition. Pattern Analysis and Applications. 2014, vol. 17, nr 3, pp. 1-15.
2012
- Sas J., Markowska-Kaczmar U., Similarity-based training set acquisition for continuous handwriting recognition. Information Sciences. 2012, vol. 191, pp. 226-244.
2011
- Kwaśnicka H., Markowska-Kaczmar U., Mikosik M., Flocking behaviour in simple ecosystems as a result of artificial evolution. Applied Soft Computing. 2011, vol. 11, nr 1, pp. 982-990.
2005
- Markowska-Kaczmar U., Trelak W., Fuzzy logic and evolutionary algorithm - two techniques in rule extraction from neural networks, Neurocomputing 2005 vol. 63 pp. 359-379
Papers in DONA database
Homepage
Selected publications |
1 | Article 2025
Michał Karolewski, Michał Wawrzyniak, Karol Szymończyk, Joanna I Szołomicka, Jakub Pyka, Karol Kulawiec, Aneta Demidaś, Masticatory organ dysfunction recognition based on multimodal information. Engineering Applications of Artificial Intelligence. 2025, vol. 144, art. 109998, s. 1-20. ISSN: 0952-1976; 1873-6769 | Resources:DOIURLSFX |     |
|
2 | Proceeding paper 2024
Gradient Overdrive: aviding negative randomness effects in Stochastic Gradient Descent. W: Recent Challenges in Intelligent Information and Database Systems : 16th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2024, Ras Al Khaimah, UAE, April 15–18, 2024 : proceedings. Pt. 1 / eds. Ngoc Thanh Nguyen [i in.]. Singapore : Springer, cop. 2024. s. 175-186. ISBN: 978-981-97-5936-1; 978-981-97-5937-8 | Resources:DOIURLSFX | |
|
3 | Article 2024
Michał P Karol, Łukasz Fuławka, Deep learning for cancer cell detection: do we need dedicated models?. Artificial Intelligence Review. 2024, vol. 57, art. 53, s. 1-36. ISSN: 0269-2821; 1573-7462 | Resources:DOIURLSFX |     |
|
4 | Monographs and other books editing 2023
Nikhil Jain, Chee Peng Lim, Lakhmi C Jain, Advances in smart healthcare paradigms and applications : outstanding women in healthcare. Vol. 1. Cham: Springer, cop. 2023. XII, 255 s. ISBN: 978-3-031-37305-3; 978-3-031-37306-0 (Intelligent Systems Reference Library, ISSN 1868-4394; vol. 244) | Resources:DOI | |
|
5 | Monograph chapter 2023
An overview of few-shot learning methods in analysis of histopathological images. W: Advances in smart healthcare paradigms and applications : outstanding women in healthcare. Vol. 1 / eds. Halina Kwaśnicka [i in.]. Cham : Springer, cop. 2023. s. 87-113. ISBN: 978-3-031-37305-3; 978-3-031-37306-0 | Resources:DOISFX | |
|
6 | Article 2022
Semi‑supervised classifier guided by discriminator. Scientific Reports. 2022, vol. 12, art. 14665, s. 1-17. ISSN: 2045-2322 | Resources:DOIURLSFX |     |
|
7 | Proceeding paper 2021
Utterance style transfer using deep models. W: Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES 2021 / eds. Jaroslaw Watrobski [i in.]. Amsterdam : Elsevier, cop. 2021. s. 2132-2141. | Resources:DOISFX |  |
|
8 | Proceeding paper 2021
Creating herd behavior by virtual agents using neural networks. W: Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES 2021 / eds. Jaroslaw Watrobski [i in.]. Amsterdam : Elsevier, cop. 2021. s. 437-446. | Resources:DOISFX |  |
|
9 | Article 2021
Extreme learning machine versus classical feedforward network. Comparison from the usability perspective. Neural Computing & Applications. 2021, vol. 33, s. 15121-15144. ISSN: 0941-0643; 1433-3058 | Resources:DOIURLSFX |     |
|
10 | Article 2021
Human flow recognition using deep learning and image processing methods. Engineering Applications of Artificial Intelligence. 2021, vol. 104, art. 104346, s. 1-11. ISSN: 0952-1976; 1873-6769 | Resources:DOISFX |    |
|
All publications