| Wybrane publikacje |
| 1 | Referat konferencyjny 2025
Andrzej Dorochowicz, Dariusz Jankowski, Paweł Ksieniewicz, Katarzyna A Topolska, Mariusz Topolski, Paweł Zyblewski,| A prototype of an AI-driven operational security system for FinTechs: a faaS-based approach to fraud detection. W: Progress in Pattern Classification and Machine Learning : Proceedings of the 14th International Conference on Computer Recognition Systems 2025 / eds. Paweł Trajdos, Robert Burduk. Cham : Springer Nature Switzerland AG, cop. 2025. s. 103-112. ISBN: 978-3-032-01772-7; 978-3-032-01773-4 | | Zasoby:DOIURLSFX | |
|
| 2 | Referat konferencyjny 2025
Dariusz Jankowski, Jakub Kardela,| Classification of multimodal biomedical data. W: Progress in Pattern Classification and Machine Learning : Proceedings of the 14th International Conference on Computer Recognition Systems 2025 / eds. Paweł Trajdos, Robert Burduk. Cham : Springer Nature Switzerland AG, cop. 2025. s. 54-65. ISBN: 978-3-032-01772-7; 978-3-032-01773-4 | | Zasoby:DOIURLSFX | |
|
| 3 | Referat konferencyjny 2018
Barbara Bobowska, Dariusz Jankowski,| MapReduce model for random forest algorithm: experimental studies. W: Intelligent Data Engineering and Automated Learning - IDEAL 2018 : 19th International Conference, Madrid, Spain, November 21-23, 2018 : proceedings. Part I / eds. Hujun Yin [i in.]. Cham : Springer, cop. 2018. s. 184-194. ISBN: 978-3-030-03492-4 | | Zasoby:DOISFX |  |
|
| 4 | Artykuł 2016
Dariusz Jankowski, Konrad Jackowski, Bogusław Cyganek,| Learning decision trees from data streams with concept drift. Procedia Computer Science. 2016, vol. 80, s. 1682-1691. ISSN: 1877-0509 | | Zasoby:DOISFX |  |
|
| 5 | Referat konferencyjny 2016
Konrad Jackowski, Dariusz Jankowski, Héctor Quintián, Emilio Corchado, Michał Woźniak,| Modelling dental milling process with machine learning-based regression algorithms. W: Proceedings of the 9th International Conference on Computer Recognition Systems, CORES 2015 / Robert Burduk, Konrad Jackowski, Marek Kurzyński, Michał Woźniak, Andrzej Żołnierek (Eds.). [Cham] : Springer, cop. 2016. s. 701-711. ISBN: 978-3-319-26225-3 | | Zasoby:DOISFX |  |
|
| 6 | Referat konferencyjny 2016
Bogusław Cyganek, Michał Woźniak, Dariusz Jankowski,| Ensemble of HOSVD generated tensor subspace clasiffier with optimal tensor flattering directions. W: Hybrid artificial intelligent systems : 11th International Conference, HAIS 2016, Seville, Spain, April 18-20, 2016 : proceedings / Francisco Martinez-Alvarez [i in.] (eds.). [Cham] : Springer, cop. 2016. s. 560-571. ISBN: 978-3-319-32033-5 | | Zasoby:DOISFX |  |
|
| 7 | Referat konferencyjny 2015
Dragan Simić, Konrad Jackowski, Dariusz Jankowski, Svetlana Simić,| Comparison of Clustering Methods in Cotton Textile Industry. W: Intelligent data engineering and automated learning - IDEAL 2015 : 16th International Conference, Wroclaw, Poland, October 14-16, 2015 : proceedings / Konrad Jackowski [i in.] (eds). Cham [i in.] : Springer, cop. 2015. s. 501-508. ISBN: 978-3-319-24833-2 | | Zasoby:DOISFX |  |
|
| 8 | Referat konferencyjny 2015
Dariusz Jankowski, Konrad Jackowski,| An increment decision tree algorithm for streamed data. W: BigDataSe 2015 : the 9th IEEE International Conference on Big Data Science and Engineering, 20-22 August 2015, Helsinki, Finland. Los Alamitos, Ca. [i in.] : IEEE Computer Society Conference Publishing Services, cop. 2015. s. 199-204. ISBN: 978-1-4673-7951-9; 978-1-4673-7952-6 | | Zasoby:DOIURL |  |
|
| 9 | Artykuł 2015
Paweł Ksieniewicz, Dariusz Jankowski, Borja Ayerdi, Konrad Jackowski, Manuel Graña, Michał Woźniak,| A novel hyperspectral segmentation algorithm - concept and evaluation. Logic Journal of the IGPL. 2015, vol. 23, nr 1, s. 105-120. ISSN: 1367-0751 | | Zasoby:DOISFX |    |
|
| 10 | Rozdział w monografii 2015
Konrad Jackowski, Dariusz Jankowski, Dragan Simić, Svetlana Simić,| Migraine diagnosis support system based on classifier ensemble. W: ICT innovations 2014 : world of data / Ana Madevska Bogdanova, Dejan Gjorgjevikj (eds.). Cham [i in.] : Springer, cop. 2015. s. 329-339. ISBN: 978-3-319-09878-4 | | Zasoby:DOISFX | |
|