Wybrane publikacje |
1 | Referat konferencyjny 2022
Empirical linkage learning for non-binary discrete search spaces in the optimization of a large-scale real-world problem. W: GECCO '22 : Proceedings of the 2022 Genetic and Evolutionary Computation Conference, July 9-13, 2022, Boston, Massachusetts / ed. Jonathan E. Fieldsend. New York, NY : ACM, cop. 2022. s. 35-36. ISBN: 978-1-4503-9237-2 | Zasoby:DOIURL | |
|
2 | Referat konferencyjny 2022
Iterated local search with perturbation based on variables interaction for pseudo-boolean optimization. W: GECCO '22 : Proceedings of the 2022 Genetic and Evolutionary Computation Conference, July 9-13, 2022, Boston, Massachusetts / ed. Jonathan E. Fieldsend. New York, NY : ACM, cop. 2022. s. 296-304. ISBN: 978-1-4503-9237-2 | Zasoby:DOIURL | |
|
3 | Referat konferencyjny 2022
On turning black - into dark gray-optimization with the direct empirical linkage discovery and partition crossover. W: GECCO '22 : Proceedings of the 2022 Genetic and Evolutionary Computation Conference, July 9-13, 2022, Boston, Massachusetts / ed. Jonathan E. Fieldsend. New York, NY : ACM, cop. 2022. s. 269-277. ISBN: 978-1-4503-9237-2 | Zasoby:DOIURL | |
|
4 | Artykuł 2022
Incremental recursive ranking grouping for large scale global optimization. IEEE Transactions on Evolutionary Computation. 2022, s. 1-15. ISSN: 1089-778X; 1941-0026 | Zasoby:DOIURL | |
|
5 | Referat konferencyjny 2021
Hybrid linkage learning for permutation optimization with Gene-pool optimal mixing evolutionary algorithms. W: GECCO’21 Companion : Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion, July 10-14, 2021 Lille, France / eds. Francisco Chicano, Krzysztof Krawiec. New York, NY : ACM, cop. 2021. s. 1442-1450. ISBN: 978-1-4503-8351-6 | Zasoby:DOI | |
|
6 | Referat konferencyjny 2021
Direct linkage discovery with empirical linkage learning. W: GECCO’21 Companion : Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion, July 10-14, 2021 Lille, France / eds. Francisco Chicano, Krzysztof Krawiec. New York, NY : ACM, cop. 2021. s. 609-617. ISBN: 978-1-4503-8351-6 | Zasoby:DOI | |
|
7 | Referat konferencyjny 2021
Multi-objective parameter-less population pyramid in solving the real-world and theoretical problems. W: GECCO’21 Companion : Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion, July 10-14, 2021 Lille, France / eds. Francisco Chicano, Krzysztof Krawiec. New York, NY : ACM, cop. 2021. s. 41-42. ISBN: 978-1-4503-8351-6 | Zasoby:DOI | |
|
8 | Referat konferencyjny 2021
Fitness caching - from a minor mechanism to major consequences in modern Evolutionary Computation. W: 2021 IEEE Congress on Evolutionary Computation (CEC), 28.06-1.07.2021, Kraków, Poland : proceedings / eds. Jacek Mańdziuk and Hussein Abbass. Danvers : IEEE, cop. 2021. s. 1785-1791. ISBN: 978-1-7281-8394-7; 978-1-7281-8393-0 | Zasoby:DOIURL | |
|
9 | Artykuł 2021
Empirical problem decomposition - the key to the evolutionary effectiveness in solving a large-scale non-binary discrete real-world problem. Applied Soft Computing. 2021, vol. 113, art. 107864, s. 1-17. ISSN: 1568-4946; 1872-9681 | Zasoby:DOIURLSFX | |
|
10 | Artykuł 2021
Multi-objective Parameter-less Population Pyramid for solving industrial process planning problems. Swarm and Evolutionary Computation. 2021, vol. 60, art. 100773, s. 1-17. ISSN: 2210-6502; 2210-6510 | Zasoby:DOISFX | |
|