prof. dr hab. inż. Michał Woźniak
Email: michal.wozniak@pwr.edu.pl
Jednostka: Wydział Informatyki i Telekomunikacji » Katedra Systemów i Sieci Komputerowych
ul. Z. Janiszewskiego 11/17, Wrocław
bud. C-3, pok. 16
tel. 71 320 2992
Konsultacje
- poniedziałek 15-17 - proszę o wcześniejszą informację za pośrednictwem poczty elektronicznej
Zainteresowania naukowe
- Uczenie maszyn; klasyfikacja obiektów; uczenie indukcyjne; eksploracja strumienie danych; klasyfikacja strumieni danych; dryft modelu; uczenie na podstawie rozproszonych i szybkozmiennych danych zespołu klasyfikatorów; klasyfikacja danych niezbalansowanych; klasyfikacja z uwzględnieniem kontekstu; telemedycyna i systemy wspomagania decyzji medycznych.
Najważniejsze publikacje z ostatnich lat
- Weronika Węgier, Michał M. Koziarski, Michał Woźniak, Optimized hybrid imbalanced data sampling for decision tree training. Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion, July 15-19, 2023, Lisbon, Portugal, pp. 339-342.
- Jędrzej Kozal, Michał Woźniak, Increasing depth of neural networks for life-long learning, Information Fusion, Volume 98, October 2023, 101829
- Michał Woźniak, Paweł Zyblewski, Paweł Ksieniewicz, Active Weighted Aging Ensemble for Drifted Data Stream Classification arxiv version, Information Sciences, Volume 630, June 2023, Pages 286-304.
- Michał Panek, Adam Pomykała, Ireneusz Jabłoński, Michał Woźniak, 5G/5G+ network management employing AI-based continuous deployment, Applied Soft Computing, 109984, 2023.
- Paweł Ksieniewicz, Paweł Zyblewski, Weronika Borek-Marciniec, Rafał Kozik, Michał Choraś, Michał Woźniak, Alphabet Flatting as a variant of n-gram feature extraction method in ensemble classification of fake news, Engineering Applications of Artificial Intelligence, Volume 120, April 2023, 105882.
- Joanna Grzyb, Michał Woźniak, SVM ensemble training for imbalanced data classification using multi-objective optimization techniques, Applied Intelligence
- Sebastián Basterrech, Michał Woźniak, Tracking changes using Kullback-Leibler divergence for the continual learning, 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 2022, pp. 3279-3285. arxiv
- Jakub Klikowski, Michał Woźniak, Deterministic Sampling Classifier with weighted Bagging for drifted imbalanced data stream classification, Applied Soft Computing, 2022.
- Jędrzej Kozal, Filip Guzy, Michał Woźniak, Employing chunk size adaptation to overcome concept drift, Journal of Universal Computer Science, 28(3): 249-268, 2022.
- Weronika Węgier, Michał Koziarski, Michał Woźniak, Multicriteria classifier ensemble learning for imbalanced data, IEEE ACCESS, vol. 10, pp. 16807-16818, 2022.
- Amgad M. Mohammed, Enrique Onieva, Michał Woźniak, Gonzalo Martinez-Munoz, An Analysis of Heuristic Metrics For Classifier Ensemble Pruning Based on Ordered Aggregation, Pattern Recognition, Volume 124, 108493, 2022.
- Amgad M. Mohammed, Enrique Onieva, Michał Woźniak, Selective Ensemble of Classifiers Trained on Selective Samples, Neurocomputing, vol.482, pp. 197-211, 2022.